Special conformally flat spaces and canal hypersurfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kaluza-klein Reduction of Conformally Flat Spaces

A “conformal tensor” is constructed from the metric tensor gMN (or Vielbein e A M ) and is invariant against Weyl rescaling gMN → egMN (or eM → eeM ). Moreover, it vanishes if and only if the space is conformally flat, gMN = e ηMN (or e A M = eδ M ). In dimension four or greater the conformal tensor is the Weyl tensor. In three dimensions the Weyl tensor vanishes identically, while the Cotton t...

متن کامل

The Symmetry Group of Lamé’s System and the Associated Guichard Nets for Conformally Flat Hypersurfaces

We consider conformally flat hypersurfaces in four dimensional space forms with their associated Guichard nets and Lamé’s system of equations. We show that the symmetry group of the Lamé’s system, satisfying Guichard condition, is given by translations and dilations in the independent variables and dilations in the dependents variables. We obtain the solutions which are invariant under the acti...

متن کامل

Closed Hypersurfaces of Prescribed Mean Curvature in Locally Conformally Flat Riemannian Manifolds

We prove the existence of smooth closed hypersurfaces of prescribed mean curvature homeomorphic to S for small n, n ≤ 6, provided there are barriers. 0. Introduction In a complete (n+1)-dimensional manifold N we want to find closed hypersurfaces M of prescribed mean curvature. To be more precise, let Ω be a connected open subset of N , f ∈ C(Ω̄), then we look for a closed hypersurface M ⊂ Ω such...

متن کامل

Conformally invariant bending energy for hypersurfaces

The most general conformally invariant bending energy of a closed four-dimensional surface, polynomial in the extrinsic curvature and its derivatives, is constructed. This invariance manifests itself as a set of constraints on the corresponding stress tensor. If the topology is fixed, there are three independent polynomial invariants: two of these are the straighforward quartic analogues of the...

متن کامل

Conformally Flat Structures and Hyperbolic Structures

We define an abelian group, the conformal cobordism group of hyperbolic structures, which classifies the hyperbolic structures according to whether it bounds a (higher dimensional) conformally flat structure in a conformally invariant way. We then construct a homomorphism from this group to the circle group, using the eta invariant. The homomorphism can be highly nontrivial. It remains an inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1973

ISSN: 0040-8735

DOI: 10.2748/tmj/1178241376